Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Temporal and Spatial Variation of Soil Bacteria Richness, Composition, and Function in a Neotropical Rainforest.

Identifieur interne : 000150 ( Main/Exploration ); précédent : 000149; suivant : 000151

Temporal and Spatial Variation of Soil Bacteria Richness, Composition, and Function in a Neotropical Rainforest.

Auteurs : Stephanie N. Kivlin [États-Unis] ; Christine V. Hawkes [États-Unis]

Source :

RBID : pubmed:27391450

Descripteurs français

English descriptors

Abstract

The high diversity of tree species has traditionally been considered an important controller of belowground processes in tropical rainforests. However, soil water availability and resources are also primary regulators of soil bacteria in many ecosystems. Separating the effects of these biotic and abiotic factors in the tropics is challenging because of their high spatial and temporal heterogeneity. To determine the drivers of tropical soil bacteria, we examined tree species effects using experimental tree monocultures and secondary forests at La Selva Biological Station in Costa Rica. A randomized block design captured spatial variation and we sampled at four dates across two years to assess temporal variation. We measured bacteria richness, phylogenetic diversity, community composition, biomass, and functional potential. All bacteria parameters varied significantly across dates. In addition, bacteria richness and phylogenetic diversity were affected by the interaction of vegetation type and date, whereas bacteria community composition was affected by the interaction of vegetation type and block. Shifts in bacteria community richness and composition were unrelated to shifts in enzyme function, suggesting physiological overlap among taxa. Based on the observed temporal and spatial heterogeneity, our understanding of tropical soil bacteria will benefit from additional work to determine the optimal temporal and spatial scales for sampling. Understanding spatial and temporal variation will facilitate prediction of how tropical soil microbes will respond to future environmental change.

DOI: 10.1371/journal.pone.0159131
PubMed: 27391450
PubMed Central: PMC4938164


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Temporal and Spatial Variation of Soil Bacteria Richness, Composition, and Function in a Neotropical Rainforest.</title>
<author>
<name sortKey="Kivlin, Stephanie N" sort="Kivlin, Stephanie N" uniqKey="Kivlin S" first="Stephanie N" last="Kivlin">Stephanie N. Kivlin</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
<settlement type="city">Austin (Texas)</settlement>
</placeName>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hawkes, Christine V" sort="Hawkes, Christine V" uniqKey="Hawkes C" first="Christine V" last="Hawkes">Christine V. Hawkes</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
<settlement type="city">Austin (Texas)</settlement>
</placeName>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27391450</idno>
<idno type="pmid">27391450</idno>
<idno type="doi">10.1371/journal.pone.0159131</idno>
<idno type="pmc">PMC4938164</idno>
<idno type="wicri:Area/Main/Corpus">000155</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000155</idno>
<idno type="wicri:Area/Main/Curation">000155</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000155</idno>
<idno type="wicri:Area/Main/Exploration">000155</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Temporal and Spatial Variation of Soil Bacteria Richness, Composition, and Function in a Neotropical Rainforest.</title>
<author>
<name sortKey="Kivlin, Stephanie N" sort="Kivlin, Stephanie N" uniqKey="Kivlin S" first="Stephanie N" last="Kivlin">Stephanie N. Kivlin</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
<settlement type="city">Austin (Texas)</settlement>
</placeName>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hawkes, Christine V" sort="Hawkes, Christine V" uniqKey="Hawkes C" first="Christine V" last="Hawkes">Christine V. Hawkes</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
<settlement type="city">Austin (Texas)</settlement>
</placeName>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacteria (classification)</term>
<term>Bacteria (genetics)</term>
<term>Biodiversity (MeSH)</term>
<term>Forests (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Rainforest (MeSH)</term>
<term>Soil Microbiology (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Bactéries (classification)</term>
<term>Bactéries (génétique)</term>
<term>Biodiversité (MeSH)</term>
<term>Forêt pluviale (MeSH)</term>
<term>Forêts (MeSH)</term>
<term>Microbiologie du sol (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Bactéries</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodiversity</term>
<term>Forests</term>
<term>Phylogeny</term>
<term>Rainforest</term>
<term>Soil Microbiology</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="fr">
<term>Bactéries</term>
<term>Biodiversité</term>
<term>Forêt pluviale</term>
<term>Forêts</term>
<term>Microbiologie du sol</term>
<term>Phylogenèse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The high diversity of tree species has traditionally been considered an important controller of belowground processes in tropical rainforests. However, soil water availability and resources are also primary regulators of soil bacteria in many ecosystems. Separating the effects of these biotic and abiotic factors in the tropics is challenging because of their high spatial and temporal heterogeneity. To determine the drivers of tropical soil bacteria, we examined tree species effects using experimental tree monocultures and secondary forests at La Selva Biological Station in Costa Rica. A randomized block design captured spatial variation and we sampled at four dates across two years to assess temporal variation. We measured bacteria richness, phylogenetic diversity, community composition, biomass, and functional potential. All bacteria parameters varied significantly across dates. In addition, bacteria richness and phylogenetic diversity were affected by the interaction of vegetation type and date, whereas bacteria community composition was affected by the interaction of vegetation type and block. Shifts in bacteria community richness and composition were unrelated to shifts in enzyme function, suggesting physiological overlap among taxa. Based on the observed temporal and spatial heterogeneity, our understanding of tropical soil bacteria will benefit from additional work to determine the optimal temporal and spatial scales for sampling. Understanding spatial and temporal variation will facilitate prediction of how tropical soil microbes will respond to future environmental change. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27391450</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>08</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Temporal and Spatial Variation of Soil Bacteria Richness, Composition, and Function in a Neotropical Rainforest.</ArticleTitle>
<Pagination>
<MedlinePgn>e0159131</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0159131</ELocationID>
<Abstract>
<AbstractText>The high diversity of tree species has traditionally been considered an important controller of belowground processes in tropical rainforests. However, soil water availability and resources are also primary regulators of soil bacteria in many ecosystems. Separating the effects of these biotic and abiotic factors in the tropics is challenging because of their high spatial and temporal heterogeneity. To determine the drivers of tropical soil bacteria, we examined tree species effects using experimental tree monocultures and secondary forests at La Selva Biological Station in Costa Rica. A randomized block design captured spatial variation and we sampled at four dates across two years to assess temporal variation. We measured bacteria richness, phylogenetic diversity, community composition, biomass, and functional potential. All bacteria parameters varied significantly across dates. In addition, bacteria richness and phylogenetic diversity were affected by the interaction of vegetation type and date, whereas bacteria community composition was affected by the interaction of vegetation type and block. Shifts in bacteria community richness and composition were unrelated to shifts in enzyme function, suggesting physiological overlap among taxa. Based on the observed temporal and spatial heterogeneity, our understanding of tropical soil bacteria will benefit from additional work to determine the optimal temporal and spatial scales for sampling. Understanding spatial and temporal variation will facilitate prediction of how tropical soil microbes will respond to future environmental change. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kivlin</LastName>
<ForeName>Stephanie N</ForeName>
<Initials>SN</Initials>
<AffiliationInfo>
<Affiliation>Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hawkes</LastName>
<ForeName>Christine V</ForeName>
<Initials>CV</Initials>
<AffiliationInfo>
<Affiliation>Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>07</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044822" MajorTopicYN="N">Biodiversity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065928" MajorTopicYN="Y">Forests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065947" MajorTopicYN="Y">Rainforest</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>02</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>06</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>7</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>7</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>8</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27391450</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0159131</ArticleId>
<ArticleId IdType="pii">PONE-D-16-07655</ArticleId>
<ArticleId IdType="pmc">PMC4938164</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):5881-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20231463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2015 Aug 7;282(1812):20151001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26224711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2008 Nov;11(11):1252-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18823393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Mar 10;5(3):e9490</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20224823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jun 19;9(6):e100275</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24945351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2012 Aug;64(2):474-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22395784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Jan;209(2):845-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26390155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):10931-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22715291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2016 Dec;18(12 ):4662-4673</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27130750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2014 Nov 22;281(1795):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25274366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 May 24;113(21):5970-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27140646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jan 7;41(1):e1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22933715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Dec;188(4):916-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20854395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2013 Jun;7(6):1187-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23303371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2014 Feb;17 (2):155-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24261594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Aug 15;27(16):2194-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21700674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2015 May;69(4):843-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24889286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Jul 1;23(13):i559-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17646343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2015 May;22(5):377-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25549288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Mar 15;7:323</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27014243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Jul 15;30(14):3059-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12136088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):626-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16407148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Rev Camb Philos Soc. 2016 Jan 20;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26785932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1999 Aug;65(8):3622-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10427058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2010 May;7(5):335-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2006 Aug;52(2):226-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16897297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Appl. 2010 Jun;20(4):1087-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20597292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2010 Oct;4(10):1340-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20445636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2014 Apr 03;10(4):e1003531</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24699258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Aug 5;466(7307):752-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20581819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2013 Feb;7(2):384-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23151641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2014 Jul;8(7):1548-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24451208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jun 1;26(11):1463-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20395285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Dec 01;6:8960</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26621582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Oct 1;26(19):2460-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20709691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Dec;75(23):7537-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19801464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2013 Mar;79(5):1545-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23263967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2015 Sep;21(9):3532-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25873563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2007 Jun;88(6):1354-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17601128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Jun;210(4):1369-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26832073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2010 Aug;91(8):2313-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20836453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2015 Dec;18(12):1397-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26472095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2013 Sep;19(9):2804-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23606589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Apr 20;7:525</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27148214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014;15(12):550</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25516281</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Texas</li>
</region>
<settlement>
<li>Austin (Texas)</li>
</settlement>
<orgName>
<li>Université du Texas à Austin</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Texas">
<name sortKey="Kivlin, Stephanie N" sort="Kivlin, Stephanie N" uniqKey="Kivlin S" first="Stephanie N" last="Kivlin">Stephanie N. Kivlin</name>
</region>
<name sortKey="Hawkes, Christine V" sort="Hawkes, Christine V" uniqKey="Hawkes C" first="Christine V" last="Hawkes">Christine V. Hawkes</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000150 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000150 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27391450
   |texte=   Temporal and Spatial Variation of Soil Bacteria Richness, Composition, and Function in a Neotropical Rainforest.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27391450" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020